Crosstalk between the Rb pathway and AKT signaling forms a quiescence-senescence switch.
نویسندگان
چکیده
Cell-cycle arrest in quiescence and senescence is largely orchestrated by the retinoblastoma (Rb) tumor-suppressor pathway, but the mechanisms underlying the quiescence-senescence switch remain unclear. Here, we show that the crosstalk between the Rb-AKT-signaling pathways forms this switch by controlling the overlapping functions of FoxO3a and FoxM1 transcription factors in cultured fibroblasts. In the absence of mitogenic signals, although FoxM1 expression is repressed by the Rb pathway, FoxO3a prevents reactive oxygen species (ROS) production by maintaining SOD2 expression, leading to quiescence. However, if the Rb pathway is activated in the presence of mitogenic signals, FoxO3a is also inactivated by AKT, thus reducing SOD2 expression and consequently allowing ROS production. This situation elicits senescence through irreparable DNA damage. We demonstrate that this pathway operates in mouse liver, indicating that this machinery may contribute more broadly to tissue homeostasis in vivo.
منابع مشابه
A novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system
Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...
متن کاملContact inhibition against senescence
Cellular senescence is a form of irreversible growth arrest historically associated with the exhaustion of replicative potential of in vitro cultured cells. Senescence can be triggered by many stimuli, including telomere attrition, DNA damage, oxidative stress, activation of oncogenes, and inactivation of tumor suppressor genes, and plays important roles in tumor suppression, organism aging, ti...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملP22: The Association between TrkB Signaling Pathway and NMDARs in LTP Induction
Long-term potentiation (LTP) is a biological process of learning and memory after a high-frequency train of electrical stimulations. By binding of brain-derived neurotrophic factor (BDNF) to Tropomyosin receptor kinase B (TrKB) receptors in postsynaptic neurons, tyrosine kinase Fyn is bound to these receptors and hereby plays a mediating role to binding and activation of N-methyl-D-aspartic aci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell reports
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2014